If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10t^2+5t+10=0
a = -10; b = 5; c = +10;
Δ = b2-4ac
Δ = 52-4·(-10)·10
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{17}}{2*-10}=\frac{-5-5\sqrt{17}}{-20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{17}}{2*-10}=\frac{-5+5\sqrt{17}}{-20} $
| (4z+1)(9+2)=0 | | 22=6+2.5x | | 8q+6-4q=-14 | | 2/3x+-4=-8/3 | | 7j-j-3=9 | | 180+6x=8x | | 95+2w-5=90 | | 2.4x8=105.6 | | 1s+2=2s+4 | | 12+(5/3)b+11-18=20 | | 6+x/3=20 | | 8+9.8x+9=7.6x-16 | | -10y+18+8y=4y+32 | | 2x-5(x-6)=3(x-10) | | -64=-2t | | 1+2m=2+4m | | 62=(7x-8) | | 10n/40-16/40=24/40 | | 2(8+5b)=-33 | | (2/5)x+10=30 | | 5(m+4)=)=36+10m | | 1/2x-10=12 | | 15/h=5/17 | | -28=n+36 | | n/4-4/10=6/10 | | n/4+8=11 | | 3x−4=3x+8 | | 10x²-7x+4=0 | | 27+5.75x=2(x-1.5) | | 10/3=10x | | 0.15x+20=95 | | (9x58)=5 |